RADIATIVE HEAT TRANSFER TO A LAMINAR
LIQUID FLOW
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A calculation is presented of the temperature distribution in a laminar liquid flow moving in
a circular tube. The heat exchange on the outer surface of the channel is determined by the
Stefan— Boltzmann law,

Let us investigate the transfer of heat inside a liquid flowing in a circular pipe whose wall has zero
resistance. The local heat-flux density on the channel wall is proportional to the difference between the
fourth powers of the temperatures of the outside surface and the gaseous medium. Assuming the liquid flow
to be stabilized with a parabolic velocity profile, we consider the two cases of greatest practical interest:

1) radiative heating of a gaseous medium with temperature Ty,;
2) radiative cooling in a medium of zero temperature.

The mathematical formulation of the first problem includes the energy equation
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A general analytic method of solving heat-conduction problems with different nonlinear boundary con-
ditions was developed in [1], and was subsequently used to calculate noustationary radiant heating and cool-
ing of solids {2, 3]. With suitable modifications, this method can be easily generalized to include cases of
heat exchange with a flowing liquid.

Thus, the application of the transformation
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6(0, X) in a liquid stream (the curves
represent the computer data and the
points calculations by the proposed
procedure): 1-3) Kiy = 0.5, 1.0, and
1.5, respectively.

pi = 49:{. It should be noted that in the case of moderate heating
(not too large values of the Ki; number), minimization is ensured
by a sufficiently simple choice of the parameter p without sub-
dividing the entire range of temperature variation into intervals:
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The solution of the linearized equation (6) under the boundary conditions (7)-(9) is
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where Ay, ¥y, and g, are defined in [4].

Substitution of (11) into the transformation (5), which is tabulated in [2], yields the final solution of
this problem,

The process of radiative cooling in 2 medium of zero temperature is described by the energy equation
{1) with boundary conditions
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The transformation
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without changing the symmetry conditions, linearizes the boundary condition
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This gives rise to the following nonlinear function in the transformed equation for the energy:
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The calculation then follows the same sequence as in the first problem. The nonlinear complex (13)

is first linearized by assuming P; = 405?; in each interval 1-6y,...,6;_;—6;,... . This is followed by the
use of a solution of the type (11) and the transformation (12),
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The temperatures ingide a liquid flowing in a plane channel are calculated in similar fashion in the
case of rod flow, in problems with axial heat diffusion, when the stream contains internal heat sources
distributed homogeneously or inhomogeneously over the cross section, etc.

A major advantage of this method is its relatively high accuracy at a minimum number of intervals.
The temperatures of a liquid on the axis of a round tube, calculated by the method described above, are
compared in Fig. 1 with computer data. The calculation was performed for the case of rod flow at Ki,
= 0.5, 1.0, and 1.5, The temperature of the liquid entering the channel was assumed to be 6; = 0.2, The
abscissa of the diagram is the reduced length of the tube X = 4/Pe -x/d,. The first two heating processes
were calculated without subdividing the entire range of temperature variation into intervals, and the cor-
rection parameter was determined from formula (10). To find the temperature on the tube axis at Ki,
= 1.5, the range of variation of the sought temperature (from 0.2 to 1.0) was divided into only two intervals,
0.2-0.6 and 0.6-1.0, in which case p; = 4(0. 6)° and Py = 4[(0.6 + 1.0)/2]%. The difference between our results
and the computer data for all three cases was nowhere larger than 3.0-4,0%.

In conclusion we present formulas with which it is possible to calculate the entire temperature field
inside a liquid stream if the distribution of the temperatures along the arbitrarily chosen coordinate axes
r =r, and X = X, is known,

As is well known [4], at a sufficiently large reduced tube length X, all the terms of the series (11)
except the first can be neglected, i.e., in general form we have
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If we now trace the temperature variation along the coordinate r = r,, and then x = x,, in analogy
with [5, 6] as well as [7], then simple transformations yield
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The relations (14) and (15) are similar to those obtained in [2, 3] for the nonstationary thermal con-
ductivity, This is due, first, to the fact that the expressions for the temperature field, justas in [2, 3],
are limited to the first term of an infinite series, and second to self-similarity of the laminar flow under
consideration,

It is important to note that Eqs. (14) and (15), which make it possible to determine the temperature
8(r,x) at any point of the stream from the measured temperatures and the three points with coordinates
Ty, X435 Ty, X; and r, X, , do not require knowledge of the thermophysical properties of the liquid, the
stream velocity, or the degree of blackness of the exterior surface. In addition, since the origin 0(r,, x,)
can be chosen arbitrarily, it is most convenient to use (14) and (15) when the temperature distribution in
the stream must be determined from the values of the known temperatures on the channel wall, i.e,, when
Ty =Ty

NOTATION
] is the relative dimensionless temperature;
R and X are the generalized coordinates;
Pe is the Péclet number;
Ki is the Kirpichev number;
d, is the inside diameter of the tube;
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is the outside diameter of the tube;

is the velocity averaged over the cross section;

are the thermal conductivity and thermal diffusivity of liquid;
is the radiation coefficient;

is the correction parameter.
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