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A calculation is p resented  of the t e m p e r a t u r e  distr ibution in a l aminar  liquid flow moving in 
a c i rcu la r  tube. The heat  exchange on the outer surface  of the channel is de te rmined  by the 
S t e fan -  Boltzmann law. 

Let  us invest igate the t r an s f e r  of heat  inside a liquid flowing in a c i rcu la r  pipe whose wall has zero 
res i s t ance .  The local  heat- f lux densi ty on the channel wall  is propor t ional  to the di f ference between the 
fourth powers  of the t e m p e r a t u r e s  of the outside surface  and the gaseous  medium.  Assuming the liquid flow 
to be s tabi l ized with a parabol ic  veloci ty prof i le ,  we consider  the two cases  of g r ea t e s t  p rac t i ca l  in teres t :  

1) rad ia t ive  heating of a gaseous medium with t e m p e r a t u r e  Tm; 

2) radia t ive  cooling in a medium of zero t empera tu re .  

The mathemat ica l  formulat ion of the f i r s t  p rob lem includes the energy  equation 

a2O(R, x) + l . nO(R, x )  = ( I _ R ~  ) nO(R, X) (1) 
aR 2 R aR ax 

and the boundary conditions 

o (R,  o) = oo, (2) 

a0(l, X) ~_Ki 1[i_04(1, X)], (3) 
OR 

where 

ao (o, x )  = o, (4)  

OR 

r .  X =  2x . V/do 
R =  r--o' P----~o' Pe = a ; do = 2r~ 

T %~mro d 
0 = -~--m, I<:il = ~ " do ' 

A genera l  analyt ic  method of solving heat-conduct ion p rob lems  with different  nonlinear boundary con- 
ditions was developed in [1], and was subsequently used to calculate noas ta t lonary  radiant  heating and cool-  
ing of solids [2, 3]. With suitable modif icat ions,  this method can be eas i ly  genera l ized  to include cases  of 
heat  exchange with a flowing liquid. 

Thus,  the application of the t r ans fo rma t ion  
0 

ln@ = ~  dO _ 1 (Arth0+arctg0) (5) 
- - p  J 1 -':" 0 ~ 

o 

to the problem (I)-(4) yields 

a ~  ~_ i a~ ( I _ R ~ )  a~ I ao/aR ~2 
aR - - q -  - R aR - a x  + p9 \ ~ ] (p--40,), (6) 
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Fig. 1. Variat ion of the t e m p e r a t u r e  
0(0, X) in a liquid s t r e a m  (the curves  
r e p r e s e n t  the computer  data and the 
points calculat ions by the proposed  
procedure) :  1-3) Ki 1 = 0.5, 1.0, and 
1.5; r e spec t ive ly .  

0,4 

~ (R, 0) = exp [ - -  P (Arth 0o + arctg 0o)] ~- 9o, (7) 

a~(1, x) 
- p K i l e ( 1 ,  X), (8) 

OR 

ao (o, x )  = o. (9) 
OR 

To solve the sys t em (6)-(9) it is n e c e s s a r y  f i r s t  to ma in -  
tain the nonlinear function ft(P, d, O, 00/OR) in the r ight -hand 
side of the t r ans fo rmed  energy  equation (6). The condition fl 

0 can be rea l i zed  in the following manner ,  as  indicated in [1, 
2]: the region of variat ion 0ffl, X) is broken up into s eve ra l  seg -  
men t s  (0~-01, �9 �9 �9 0 i - t - 0 t ,  �9 �9 �9 ), in each of which it is a s sumed  that 
Pi = 40~. It  should be noted that in the case of modera te  heating 
(not too la rge  values of the Ki t number) ,  minimizat ion is ensured  
by a sufficiently s imple  choice of the p a r a m e t e r  p without sub-  
dividing the ent i re  range  of t e m p e r a t u r e  var ia t ion into in tervals :  

p = 4 . (10) 

The solution of the l inear ized  equation (6) under the boundary conditions (7)-(9) is 

' 

n ~ 0  

where An, Cn, and e n a r e  defined in [4]. 

Substitution of (11) into the t r ans fo rma t ion  (5), wMeh is tabulated in [2], yields the final solution of 
this p roblem.  

The p r o c e s s  of radia t ive  cooling in a medium of zero  t e m p e r a t u r e  is descr ibed  by the ene rgy  equation 
(1) with boundary conditions 

0(R, 0 ) = I ,  00(1, X) = _ i % 0 4 ( 1  ' X), 00(0, X) =0"  
OR OR 

7" Ki~= %r]r~ d 
~  W , - W -  

Here  

The t r ans fo rma t ion  

~(R' X) - exp [ - -  P-- O-~(R' X)] (12) 

without changing the s y m m e t r y  conditions, l inear izes  the boundary condition 

ae(1, x) 
- p Ki._ q (1, x). 

OR 

This gives  r i s e  to the following nonlinear function in the t r a n s f o r m e d  equation for  the energy:  

a~ o0 
�9 - -  0 -4  (t) - 403) ( 1 3 )  

h -  OR OR 

and 

0'(R, 0 ) = e x p ( - -  3P---)=~ 0. 

The calculation then follows the s ame  sequence as in the f i r s t  p roblem.  The nonlinear complex (13)  

is f i r s t  l inear ized  by assuming  Pi = 40~ in each interval  1 -01  . . . . .  Oi_ ~- 0 t . . . . .  This is followed by the 
use of a solution of the type (11) and the t r ans fo rma t ion  (12). 
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The tempera tures  inside a liquid flowing in a plane channel are  calculated in s imilar  fashion in the 
case of rod flow, in problems with axial heat diffusion, when the s t ream contains internal heat sources  
distributed homogeneously or inhomogeneously over the cross  section, etc. 

A major  advantage of this method is its relat ively high accuracy  at a minimum number of intervals.  
The tempera tures  of a liquid on the axis of a round tube, calculated by the method described above, are  
compared in Fig. 1 with computer data. The calculation was per formed for the case of rod flow at Ki 1 
= 0.5, 1.0, and 1.5. The temperature  of the liquid entering the channel was assumed to be 0 0 = 0.2. The 
abscissa  of the diagram is the reduced length of the tube X = 4 /Pe  -x /d  0. The f i rs t  two heating p rocesses  
were calculated without subdividing the entire range of temperature  variation into intervals,  and the co r -  
rect ion pa ramete r  was determined from formula (10). To find the temperature  on the tube axis at Ki 1 
= 1.5, the range of variation of the sought temperature  (from 0.2 to 1.0) was divided into only two intervals,  
0.2-0.6 and 0.6-1.0, in which case Pl = 4(0.6) 3 and P2 = 4[(0.6 + 1.0)/2] 3. The difference between our resul ts  
and the computer data for all three cases was nowhere la rger  than 3.0-4.0%. 

In conclusion we present  formulas with which it is possible to calculate the entire temperature  field 
inside a liquid s t ream if the distribution of the tempera tures  along the a rb i t ra r i ly  chosen coordinate axes 
r = r ,  and x = x .  is known. 

As is well known [4], at a sufficiently large reduced tube length X, all the t e rms  of the ser ies  (11) 
except the f i rs t  can be neglected, i .e . ,  in general  form we have 

~(r, x) = q(r) S(x) 

Then Eqs. (5) and (12) take the form 

P [Arth 0 (r, x) + arctg 0 (r, x)] O (r) S (x) = exp-- --~ 

and 

Q (r) S (z) -- exp - - ~ P  0 -a (r, x). 
3 

If we now trace the temperature  variation along the coordinate r = r , ,  and then x = x , ,  in analogy 
with [5, 6] as well as [7], then simple t ransformat ions  yield 

Arih O(r, x) q-O(r,, x,) q-arctg O(r, x) q-O(r,, x,) 
1 + 0 (r, x) 0 (r,, x,) I - -  0 (r, x) 0 (r,, x,) 

Arth 1~ (r,', x) + 0 (r, x,) 0 (r., x) + 0 (r, x.)  q- arctg , (14) 
1 + o (r,, x) 0 (r, x,) 1--  0 (r,, x) 0 (r, x,) 

0-3(r, x)= 0-~(r,, x)+O,3(r, x,)--O-~(r,, x,). (15) 

The relations (14) and (15) are  s imilar  to those obtained in [2, 3] for the nonstationary thermal  con- 
ductivity. This is due, f irst ,  to the fact that the express ions  for the temperature  field, just as in [2, 3], 
are limited to the f i rs t  te rm of an infinite ser ies ,  and second to se l f - s imi la r i ty  of the laminar  flow under 
consideration. 

It is important to note that Eqs. (14) and (15), which make it possible to determine the temperature  
0(r,x) at any point of the s t ream from the measured tempera tures  and the three points with coordinates 
r , ,  x , ;  r , ,  x; and r,  x , ,  do not require knowledge of the thermophysical  proper t ies  of the liquid, the 
s t ream velocity, or the degree of blackness of the exter ior  surface.  In addition, since the origin 0(r , ,  x,)  
can be chosen arb i t ra r i ly ,  it is most  convenient to use (14) and (15) when the temperature  distribution in 
the s t ream must be determined from the values of the known tempera tures  on the channel wall, i .e . ,  when 
r, = r O. 

0 
R and X 
Pe 
Ki 
do 

N O T A T I O N  

is the relative dimensionless temperature;  
are  the general ized coordinates; 
is the Pdclet  number; 
is the Kirpichev number; 
is the inside d iameter  of the tube; 
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is the outside d i ame te r  of the tube; 
is the velocity averaged  over  the c ro s s  section; 
a re  the the rma l  conductivity and the rma l  diffusivity of liquid; 
is the radiat ion coefficient; 
is the cor rec t ion  p a r a m e t e r .  
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